
FEEG1201 Computing - Python for Engineering

Hans Fangohr

fangohr@soton.ac.uk
https://fangohr.github.io
@ProfCompMod@fosstodon.org

1

fangohr@soton.ac.uk
https://fangohr.github.io
https://fosstodon.org/@ProfCompMod

Outline

1. Introduction Computing & Computational Engineering

2. First steps with Python

3. Functions
4. About Python

5. Introspection (dir)

6. Conditionals, if-else

7. Style guide for Python code

8. Using modules

9. Sequences

10. Loops

11. Reading and writing files

12. str, repr and eval

2

13. Print

14. String formatting

15. Default function arguments

16. Keyword function arguments

17. List comprehension

18. Optimisation

3

4

Introduction Computing &
Computational Engineering

Computing

• use of computers to support research and operation in
science, engineering, industry and services

• applications include
• analysis of data
• data science / data analytics
• artificial intelligence (AI) & machine learning (ML)
• control
• computer simulations
• virtual design & optimisation

7

This course: Why Python?

• is relatively easy to learn [1]
• high efficiency: a few lines of code achieve a lot
• growing use in academia and industry, thus
• many relevant libraries available
• minimises the time of the programmer
• but: (naive) Python in general much slower execution than
compiled languages (such as Fortran, C, C++, Rust, …).

[1] https://link.springer.com/chapter/10.1007/978-3-540-25944-2_157

8

https://link.springer.com/chapter/10.1007/978-3-540-25944-2_157

FEEG1201: Python computing

• introduces the foundations of Python programming
language

• focus on parts of Python language and libraries relevant
to engineering and design

• enable self-directed learning in the future

9

This course: practicalities

• 10 Lectures (this is lecture 1 [in teaching week 2])
• 9 computing laboratories (lab1 to be discussed in tw 3)

• sets of programming exercises
• (automatic) feedback available
• scheduled sessions
• this is the key learning activity

10

First steps with Python

Hello World program

• Our first Python program: Entered interactively in Python
prompt:

>>> print("Hello World")
Hello World

Or in Interactive Python (IPython) prompt:
In [1]: print("Hello world")
Hello world

• Python prompt (>>>) and IPython prompt (In []:) are
very similar

• We prefer the more convenient IPython prompt (but the
slides usually show the more compact >>> notation)

11

∗Read-Eval-Print Loop (REPL)

The python and the IPython prompt are both examples for a
READ-EVAL-PRINT LOOP (REPL):

• Read (the command the user enters)
• Evaluate (the command)
• Print (the result of the evaluation)
• Loop (i.e. go back to the beginning and wait for next
command)

12

Integrated development environments (Spyder)

• You can write programs with a python prompt, a shell and
an editor

• More convenient is the use of an “Integrated Development
Environment” (IDE)

• Example IDEs: Spyder, Visual Studio Code, PyCharm, IDLE,
Emacs, …

• A python prompt is typically embedded in the IDE
• We use Spyder in this module

13

Everything in Python is an object (with a type)

>>> type("Hello World")
<class 'str'> # "Hello world" is a string

'class' means 'type'
>>> type(print)
<class 'builtin_function_or_method'>

>>> type(10)
<class 'int'> # 10 is an integer number

>>> type(3.5)
<class 'float'> # 3.5 is floating point number

(floating point number: it has a decimal point)
>>> type('1.0')
<class 'str'> # string (because of the quotes)

>>> type(1 + 3j)
<class 'complex'> # complex number

14

Python prompt can act like a calculator

>>> 2 + 3
5
>>> 42 - 15.3
26.7
>>> 100 * 11
1100
>>> 2400 / 20
120
>>> 2 ** 3 # 2 to the power of 3
8
>>> 9 ** 0.5 # sqrt of 9
3.0

15

Create variables through assignment

>>> a = 10
>>> b = 20
>>> a # short cut for 'print(a)'
10
>>> b # short cut for 'print(b)'
20
>>> a + b # ...
30
>>> ab4 = (a + b) / 4
>>> ab4
7.5

16

Functions

• Example: print function

>>> print("Hello World")
Hello World

The print function takes an argument (here a string), and
does something with the argument. (Here printing the
string to the screen.)

• Example: abs function

>>> x = -100
>>> y = abs(x)
>>> print(y)
100

A function may return a value: the abs function returns
the absolute value (100) of the argument (-100). 17

The help function

The help(x) function provides documentation for object x.

Example:

>>> help(abs)
Help on built-in function abs in module builtins:

abs(x, /)
Return the absolute value of the argument.

18

Summary useful commands (introspection)

• print(x) to display the object x
Not needed at the prompt, but in programs that we will write later.

• type(x) to determine the type of object x
• help(x) to obtain the documentation string for object x
• To be introduced soon:

dir(x) to display the methods and members of object x,
or the current name space (dir()).

19

Functions

Defining a function ourselves

• Functions
• provide (potentially complicated) functionality
• are building blocks of computer programs
• hide complexity from the user of the function
• help manage complexity of software

• Example 1:
def mysum(a, b):

return a + b

main program starts here
print("The sum of 3 and 4 is", mysum(3, 4))

20

Functions should be documented (“docstring”)

def mysum(a, b):
"""Return the sum of parameters a and b."""
return a + b

main program starts here
print("The sum of 3 and 4 is", mysum(3, 4))

Can now use the help function for our new function:

>>> help(mysum)
Help on function mysum in module __main__:

mysum(a, b)
Return the sum of parameters a and b.

21

Function documentation strings

def mysum(a, b):
"""Return the sum of parameters a and b."""
return a + b

Essential information for documentation string:

• What inputs does the function expect?
• What does the function do?
• What does it return?

∗Desirable:

• Examples
• Notes on algorithm (if relevant)
• exceptions that might be raised
• [Author, date, contact details: not needed if version control is used]

LAB1

Advanced: Recommendations for documentation string style are numpydoc style or PEP257 docstring conventions.

22

https://numpydoc.readthedocs.io/en/latest/format.html
http://www.python.org/dev/peps/pep-0257/

Function documentation string example 1

def mysum(a, b):
"""Return the sum of parameters a and b.

Parameters

a : numeric

first input
b : numeric

second input

Returns

a+b : numeric

returns the sum (using the + operator) of a and b. The return type will
depend on the types of `a` and `b`, and what the plus operator returns.

Examples

>>> mysum(10, 20)
30
>>> mysum(1.5, -4)
-2.5

Notes

History: example first created 2002, last modified 2013
Hans Fangohr, fangohr@soton.ac.uk,
"""
return a + b

23

Function documentation string example 2

def factorial(n):
"""Compute the factorial recursively.

Parameters

n : int

Natural number `n` > 0 for which the factorial is computed.

Returns

n! : int

Returns n * (n-1) * (n-2) * ... * 2 * 1

Examples

>>> factorial(1)
1
>>> factorial(3)
6
>>> factorial(10)
3628800
"""
assert n > 0

if n == 1:
return 1

else:
return n * factorial(n - 1) 24

Function terminology

Example abs(x) function:

x = -1.5
y = abs(x)

• x is the argument given to the function (also called input
or parameter)

• y is the return value (the result of the function’s
computation)

• Functions may expect zero, one or more arguments
• Not all functions (seem to) return a value. (If no return
keyword is used, the special object None is returned.)

25

Function example

def plus42(n):
"""Add 42 to n and return""" # docstring

result = n + 42 # body of
return result # function

main program follows
a = 8
b = plus42(a)

After execution, b carries the value 50 (and a = 8).

26

Summary functions

• Functions provide (black boxes of) functionality:
crucial building blocks that hide complexity

• interaction (input, output) through input arguments and
return values
(printing and returning values is not the same, see slide 29)

• docstring provides the specification (contract) of the
function’s input, output and behaviour

• a function should (normally) not modify input arguments
(watch out for lists, dicts, more complex data structures as input arguments)

27

Functions printing vs returning values

Key message: functions should generally return values.

We use the Python prompt to explore the difference with these
two function definitions:

def print42():
print(42)

def return42():
return 42

28

>>> b = return42() # return 42, is assigned
>>> print(b) # to b
42

>>> a = print42() # return None, and
42 # print 42 to screen
>>> print(a)
None # special object None

29

If we use IPython, it shows whether a function returns
something (i.e. not None) through the Out [] token:

In [1]: return42()
Out[1]: 42 # Return value of 42

In [2]: print42()
42 # No 'Out []', so no

returned value

30

Summary: to print or to return?

• A function that returns the control flow through the
return keyword, will return the object given after return.

• A function that does not use the return keyword, returns
the special object None.

• Generally, functions should return a value.
• Generally, functions should not print anything.
• Calling functions from the prompt can cause some
confusion here: if the function returns a value and the
value is not assigned, it will be printed.

31

About Python

Python

What is Python?

• High level programming language
• interpreted
• supports three main programming styles
(imperative=procedural, object-oriented, functional)

• General purpose tool, yet good for numeric work with
extension libraries

Availability

• Python is free
• Python is platform independent (works on Windows,
Linux/Unix, Mac OS, …)

• Python is open source
32

Python documentation

There is lots of documentation that you should learn to use:

• Teaching materials on website, including these slides and
a text-book like document

• Online documentation, for example
• Python home page (http://www.python.org)
• Matplotlib (publication figures)
• Numpy (fast vectors and matrices, (NUMerical PYthon)
• SciPy (scientific algorithms, solve_ivp)
• SymPy (Symbolic calculation)
• Pandas (wrangling and analysing tabular data)

• interactive documentation (help())

33

https://fangohr.github.io/teaching/python/book.html
http://www.python.org
https://matplotlib.org/
https://numpy.org/
https://scipy.org/
https://sympy.org/
https://pandas.pydata.org/

Which Python version

• We use Python 3.
• For non-maintained software, Python 2.7 is still in use
• Python 2.x and 3.x are incompatible although the changes
only affect very few commands.

• For this course, Python 3.10 or more recent is sufficient
(3.12 preferred in August 2024).

34

Introspection (dir)

The directory function (dir)

• Everything in Python is an object.
• Python objects have attributes.
• dir(x) returns the attributes of object x
• Example:

>>> c = 2 + 1j
>>> dir(c) # we ignore attributes starting with __
[... 'conjugate', 'imag', 'real']
>>> c.imag
1.0
>>> c.real
2.0
>>> c.conjugate()
(2-1j)

35

Attributes of objects can be functions

Example:

>>> c = 2 + 1j
>>> dir(c)
[... 'conjugate', 'imag', 'real']
>>> type(c.real)
<class 'float'>
>>> type(c.conjugate)
<class 'builtin_function_or_method'>

To execute a function, we need to add () to their name:

>>> c.conjugate # this is the function object
<built-in method conjugate of complex object at 0x10a95f3d0>
>>> c.conjugate() # this executes the function
(2-1j) # return value of conjugate function

An object attribute that is a function, is called a method. 36

Introspection example with string

>>> word = 'test'
>>> print(word)
test
>>> type(word)
<class str>
>>> dir(word)
['__add__', '__class__', '__contains__', ...,
'__doc__', ..., 'capitalize', <snip>,
'endswith', ..., 'upper', 'zfill']
>>> word.upper()
'TEST'
>>> word.capitalize()
'Test'
>>> word.endswith('st')
True
>>> word.endswith('a')
False

37

Conditionals, if-else

Truth values

The python values True and False are special inbuilt objects:

>>> a = True
>>> print(a)
True
>>> type(a)
<class bool>
>>> b = False
>>> print(b)
False
>>> type(b)
<class bool>

38

We can operate with these two logical values using boolean
logic, for example the logical and operation (and):

>>> True and True # logical and operation
True
>>> True and False
False
>>> False and True
False
>>> False and False
False

39

There is also logical or (or) and the negation (not):

>>> True or False
True
>>> not True
False
>>> not False
True
>>> True and not False
True

40

In computer code, we often need to evaluate some expression
that is either true or false (sometimes called a “predicate”).
For example:

>>> x = 30 # assign 30 to x
>>> x >= 30 # is x greater than or equal to 30?
True
>>> x > 15 # is x greater than 15
True
>>> x > 30
False
>>> x == 30 # is x the same as 30?
True
>>> not x == 42 # is x not the same as 42?
True
>>> x != 42 # is x not the same as 42?
True

41

if-then-else

The if-else command allows to branch the execution path
depending on a condition. For example:

>>> x = 30 # assign 30 to x
>>> if x > 30: # predicate: is x > 30
... print("Yes") # if True, do this
... else:
... print("No") # if False, do this
...
No

42

The general structure of the if-else statement is

if A:
B

else:
C

where A is the predicate.

• If A evaluates to True, then all commands B are carried
out (and C is skipped).

• If A evaluates to False, then all commands C are carried
out (and B) is skipped.

• if and else are Python keywords.

A and B can each consist of multiple lines, and are grouped
through indentation as usual in Python.

43

if-else example

def slength1(s):
"""Returns a string describing the
length of the sequence s"""
if len(s) > 10:

ans = 'very long'
else:

ans = 'normal'

return ans

>>> slength1("Hello")
'normal'
>>> slength1("HelloHello")
'normal'
>>> slength1("Hello again")
'very long'

44

if-elif-else example

If more cases need to be distinguished, we can use the
keyword elif (standing for ELse IF) as many times as desired:

def slength2(s):
if len(s) == 0:

ans = 'empty'
elif len(s) > 10:

ans = 'very long'
elif len(s) > 7:

ans = 'normal'
else:

ans = 'short'

return ans

45

>>> slength2("")
'empty'
>>> slength2("Good Morning")
'very long'
>>> slength2("Greetings")
'normal'
>>> slength2("Hi")
'short'

46

Style guide for Python code

Syntax versus style

• Python programs must follow Python syntax.
• Python programs should follow Python style guide,
because

• readability is key (debugging, documentation, team effort)
• conventions improve effectiveness

47

Common style guide: PEP8

From http://www.python.org/dev/peps/pep-0008/:

• This style guide evolves over time as additional conventions are
identified and past conventions are rendered obsolete by
changes in the language itself.

• ”Readability counts”: One of Guido van Rossum’s key insights is
that code is read much more often than it is written. The
guidelines provided here are intended to improve the
readability of code and make it consistent across the wide
spectrum of Python code.

48

http://www.python.org/dev/peps/pep-0008/

PEP8 Style guide

• Indentation: use 4 spaces
• One space around assignment operator (=) operator:
c = 5 and not c=5.

• Spaces around arithmetic operators can vary. Both
x = 3*a + 4*b and x = 3 * a + 4 * b are okay.

• No space before and after parentheses:
x = sin(x) but not x = sin(x)

• A space after comma: range(5, 10) and not range(5,10).
• No whitespace at end of line
• No whitespace in empty line
• One or no empty line between statements within function

49

• Two empty lines between functions

• One import statement per line

• import first standard Python library (such as math), then
third-party packages (numpy, scipy, ...), then our own
modules

• no spaces around = when used in keyword arguments:
"Hello World".split(sep=' ') but not
"Hello World".split(sep = ' ')

50

PEP8 Style Summary

• Follow PEP8 guide, in particular for new code.
• Use tools to help us:

• Spyder editor can show PEP8 violations (In Spyder 6:
Preferences → Completion and Linting → Code style
and formatting → [X] Enable code style lintiing →
[OK])

• Similar tools/plugins are available for other editors.
editors.

• pycodestyle program available to check source code from
command line (used to be called pep8 in the past).
To check file myfile.py for PEP8 compliance:
pycodestyle myfile.py

51

∗Style conventions for documentation strings

• Python documentation strings (pydoc) conventions:
• PEP257 docstring style (from 2001), basis for both
• numpydoc style (science) and
• Google pydoc style

• Examples on slide 23 and 24 are compatible with all
conventions

• Editors can highlight deviations
• Program to check documentation string style compliance
in file myfile.py:

• pydocstyle --convention=pep257 myfile.py
• pydocstyle --convention=numpy myfile.py
• pydocstyle --convention=google myfile.py

52

http://www.python.org/dev/peps/pep-0257/
https://numpydoc.readthedocs.io/en/latest/format.html
https://google.github.io/styleguide/pyguide.html#38-comments-and-docstrings

Using modules

The math module (import math)

>>> import math
>>> math.sqrt(4)
2.0
>>> math.pi
3.141592653589793
>>> dir(math) #attributes of 'math' object
['__doc__', '__file__', < snip >
'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2',
'atanh', 'ceil', 'copysign', 'cos', 'e', 'erf',
'exp', <snip>, 'sqrt', 'tan', 'tanh', 'trunc']

>>> help(math.sqrt) # ask for help on sqrt
sqrt(...)

sqrt(x)
Return the square root of x.

53

Name spaces and modules

Three (good) options to access a module:

1. use the full name:
import math
print(math.sin(0.5))

2. use some abbreviation
import math as m
print(m.sin(0.5))
print(m.pi)

3. import all objects we need explicitly
from math import sin, pi
print(sin(0.5))
print(pi)

54

Modules provide functionality

• each module provides some additional python
functionality

• Python has many modules:
• Python Standard Library: math, pathlib, sys, …
• Contributions from others: numpy, jupyter, pytest, …
• Every programmer can create their own modules.

• there is distinction between module, package, and library
but in practice the terms are used interchangeably.

LAB2

55

Sequences

Sequences overview

Different types of sequences

• strings
• lists (mutable)
• tuples (immutable)
• arrays (mutable, part of numpy)

They share common behaviour.

56

Strings

>>> a = "Hello World"
>>> type(a)
<class str>
>>> len(a)
11
>>> print(a)
Hello World

Different possibilities to limit strings:

'A string'
"Another string"
"A string with a ' in the middle"
"""A string with triple quotes can
extend over several
lines"""

57

Strings 2 (exercise)

• Define a, b and c at the Python prompt:
>>> a = "One"
>>> b = "Two"
>>> c = "Three"

• Exercise: What do the following expressions evaluate to?
1. d = a + b + c
2. 5 * d
3. d[0], d[1], d[2] (indexing)
4. d[-1]
5. d[4:] (slicing)

58

Strings 3 (exercise)

>>> s="""My first look at Python was an
... accident, and I didn't much like what
... I saw at the time."""

For the string s:

• count the number of (i) letters ’e’ and (ii) substrings ’an’
• replace all letters ’a’ with ’0’
• make all letters uppercase
• make all capital letters lowercase, and all lower case
letters to capitals

59

Lists

[] # the empty list
[42] # a 1-element list
[5, 'hello', 17.3] # a 3-element list
[[1, 2], [3, 4], [5, 6]] # a list of lists

• Lists store an ordered sequence of Python objects
• Access through index (and slicing) as for strings.
• use help(), often used list methods is append()

(In general computer science terminology, vector or array might be better name as the

actual implementation is not a linked list, but direct O(1) access through the index is

possible.)

60

Example program: using lists

>>> a = [] # creates a list
>>> a.append('dog') # appends string 'dog'
>>> a.append('cat') # ...
>>> a.append('mouse')
>>> print(a)
['dog', 'cat', 'mouse']
>>> print(a[0]) # access first element
dog # (with index 0)
>>> print(a[1]) # ...
cat
>>> print(a[2])
mouse
>>> print(a[-1]) # access last element
mouse
>>> print(a[-2]) # second last
cat

61

Example program: lists containing a list

>>> a = ['dog', 'cat', 'mouse', [1, 10, 100, 1000]]
>>> a
['dog', 'cat', 'mouse', [1, 10, 100, 1000]]
>>> a[0]
dog
>>> a[3]
[1, 10, 100, 1000]
>>> max(a[3])
1000
>>> min(a[3])
1
>>> a[3][0]
1
>>> a[3][1]
10
>>> a[3][3]
1000

62

Sequences – more examples

>>> a = "hello world"
>>> a[4]
'o'
>>> a[4:7]
'o w'
>>> len(a)
11
>>> 'd' in a
True
>>> 'x' in a
False
>>> a + a
'hello worldhello world'
>>> 3 * a
'hello worldhello worldhello world'

63

Tuples

• tuples are very similar to lists
• tuples are immutable (unchangeable after they have been
created) whereas lists are mutable (changeable)

• tuples are usually written using parentheses (↔ “round
brackets”):
>>> t = (3, 4, 50) # t for Tuple
>>> t
(3, 4, 50)
>>> type(t)
<class tuple>

>>> L = [3, 4, 50] # compare with L for List

64

>>> L
[3, 4, 50]
>>> type(L)
<class list>

65

Tuples are defined by comma

• tuples are defined by the comma (!), not the parenthesis
>>> a = 10, 20, 30
>>> type(a)
<class tuple>

• the parentheses are usually optional (but should be
written anyway):
>>> a = (10, 20, 30)
>>> type(a)
<class tuple>

66

Tuples are sequences

• normal indexing and slicing (because tuple is a sequence)
>>> t[1]
4
>>> t[:-1]
(3, 4)

67

Why do we need tuples (in addition to lists)?

1. use tuples if you want to make sure that a set of objects
doesn’t change.

2. Using tuples, we can assign several variables in one line
(known as tuple packing and unpacking)
x, y, z = 0, 0, 1
This allows “instantaneous swap” of values:

a, b = b, a

Strictly: “tuple packing” on right hand side and “sequence unpacking” on left.

68

3. functions return tuples if they return more than one
object
def f(x):

return x**2, x**3

a, b = f(x)

4. tuples can be used as keys for dictionaries as they are
immutable

69

(Im)mutables

• Strings — like tuples — are immutable:
>>> a = 'hello world' # String example
>>> a[3] = 'x'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: object does not support item assignment

• strings can only be ’changed’ by creating a new string, for
example:
>>> a = a[0:3] + 'x' + a[4:]
>>> a
'helxo world'

70

Summary sequences

• lists, strings and tuples (and arrays) are sequences.
• sequences share the following operations

a[i] returns element with index i of a
a[i:j] returns elements i up to j− 1
len(a) returns number of elements in sequence
min(a) returns smallest value in sequence
max(a) returns largest value in sequence
x in a returns True if x is element in a
a + b concatenates a and b
n * a creates n copies of sequence a

In the table above, a and b are sequences, i, j and n are
integers, x is an element.

71

Conversions

• We can convert any sequence into a tuple using the tuple
function:
>>> tuple([1, 4, "dog"])
(1, 4, 'dog')

• Similarly, the list function, converts sequences into lists:
>>> list((10, 20, 30))
[10, 20, 30]

• Looking ahead to iterators, we note that list and tuple can
also convert from iterators:
>>> list(range(5))
[0, 1, 2, 3, 4]

• ∗And if you ever need to create an iterator from a sequence, the
iter function can this:
>>> iter([1, 2, 3])
<list_iterator object at 0x1013f1fd0> 72

Loops

Introduction loops

Computers are good at repeating tasks (often the same task
for many different sets of data).

Loops are the way to execute the same (or very similar) tasks
repeatedly (“ in a loop”).

Python provides the “for loop” and the “while loop”.

73

Example program: for-loop

animals = ['dog', 'cat', 'mouse']

for animal in animals:
print(f"This is the {animal}!")

produces

This is the dog!
This is the cat!
This is the mouse!

The for-loop iterates through the sequence animals and
assigns the values in the sequence subsequently to the name
animal.

74

Iterating over integers

Often we need to iterate over a sequence of integers:

for i in [0, 1, 2, 3, 4, 5]:
print(f"the square of {i} is {i**2}")

produces

the square of 0 is 0
the square of 1 is 1
the square of 2 is 4
the square of 3 is 9
the square of 4 is 16
the square of 5 is 25

75

Iterating over integers with range

The range(n) object is used to iterate over a sequence of
increasing integer values up to (but not including) n:

for i in range(6):
print(f"the square of {i} is {i**2}")

produces

the square of 0 is 0
the square of 1 is 1
the square of 2 is 4
the square of 3 is 9
the square of 4 is 16
the square of 5 is 25

76

The range object

• range is used to iterate over integer sequences
• We can use the range object in for loops:
>>> for i in range(3):
... print(f"i={i}")
i=0
i=1
i=2

• We can convert it to a list:
>>> list(range(6))
[0, 1, 2, 3, 4, 5]

77

• This conversion to list is useful to understand what
sequences the range object would provide if used in a for
loop:
>>> list(range(6))
[0, 1, 2, 3, 4, 5]
>>> list(range(0, 6))
[0, 1, 2, 3, 4, 5]
>>> list(range(3, 6))
[3, 4, 5]
>>> list(range(-3, 0))
[-3, -2, -1]

• ∗Advanced: range has its own type:
>>> type(range(6))
<class range>
range objects are lazy sequences (Python range is not an iterator)

78

https://treyhunner.com/2018/02/python-range-is-not-an-iterator/

Summary range

range
range([start,] stop [,step]) iterates over integers from
start up to to stop (but not including stop) in steps of step.

start defaults to 0 and step defaults to 1.

>>> list(range(0, 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(0, 10, 2))
[0, 2, 4, 6, 8]
>>> list(range(5, 4))
[] # no iterations

79

Iterating over sequences with for-loop

• for loop iterates over iterables.
• Sequences are iterable.
• Examples

for i in [0, 3, 4, 19]: # list is a
print(i) # sequence

for animal in ['dog', 'cat', 'mouse']:
print(animal)

for letter in "Hello World": # strings are
print(letter) # sequences

for i in range(5): # range objects
print(i) # are iterable

80

Example: create list with for-loop

def create_list_of_increasing_halfs(n):
"""Given integer n >=0, return list of length
n starting with [0, 0.5, 1.0, 1.5, ...]."""
result = []
for i in range(n):

number = i * 1 / 2
result.append(number)

return result

main program
print(create_list_of_increasing_halfs(5))

Output:

[0.0, 0.5, 1.0, 1.5, 2.0]
81

Example: modify list with for-loop

def modify_list_add_42(original_list):
"""Given a list, add 42 to every element
and return"""
modified_list = []
for element in original_list:

new_element = element + 42
modified_list.append(new_element)

return modified_list

main program
print(modify_list_add_42([0, 10, 100, 1000]))

Output:

[42, 52, 142, 1042]
82

Reminder: If-then-else

• Example 1 (if-then-else)
a = 42
if a > 0:

print("a is positive")
else:

print("a is negative or zero")

83

Another iteration example

This example generates a list of numbers often used in hotels
to label floors (more info)

def skip13(a, b):
"""Given ints a and b, return
list of ints from a to b without 13"""
result = []
for k in range(a, b):

if k == 13:
pass # do nothing

else:
result.append(k)

return result

84

https://en.wikipedia.org/wiki/Thirteenth_floor

Another iteration example (with continue)

This example generates a list of numbers often used in hotels
to label floors (more info)

def skip13(a, b):
"""Given ints a and b, return
list of ints from a to b without 13"""
result = []
for k in range(a, b):

if k == 13:
continue # jump to next iteration

result.append(k)
return result

85

https://en.wikipedia.org/wiki/Thirteenth_floor

Exercise range_double

Write a function range_double(n) that generates a list of
numbers similar to list(range(n)). In contrast to
list(range(n)), each value in the list should be multiplied by
2. For example:

>>> range_double(4)
[0, 2, 4, 6]
>>> range_double(10)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

For comparison the behaviour of range:

>>> list(range(4))
[0, 1, 2, 3]
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] LAB3 86

For loop summary

• for-loop to iterate over sequences
• can use range to generate sequences of integers
• special keywords:

• continue - skip remainder of body of statements and
continue with next iteration

• break - leave for-loop immediately
• ∗Advanced:

• can iterate over any iterable
• we can create our own iterables
• See summary Socratica on Iterators, Iterables, and Itertools

87

https://youtu.be/WR7mO_jYN9g

Exercise: First In First Out (FIFO) queue

Write a First-In-First-Out queue implementation, with
functions:

• add(name) to add a customer with name name (call this
when a new customer arrives)

• next() to be called when the next customer will be
served. This function returns the name of the customer

• show() to print all names of customers that are currently
waiting

• length() to return the number of currently waiting
customers

Suggest to use a global variable q and define this in the first
line of the file by assigning an empty list: q = [].

88

While loops

• Reminder:
a for loop iterates over a given sequence or iterator

• A while loop iterates while a condition is fulfilled
• x = 64

while x > 10:
x = x // 2
print(x)

produces
32
16
8

89

∗While loop example 2

Determine ϵ:

eps = 1.0

while eps + 1 > 1:
eps = eps / 2.0

print(f"epsilon is {eps}")

Output:

epsilon is 1.11022302463e-16

90

∗Iterables and iterators

• an object is iterable if the for-loop can iterate over it
• an iterator has a __next()__ method, i.e. can be used
with next(). The iterator is iterable.

>>> i = iter(["dog", "cat"]) # create iterator
from list

>>> next(i)
'dog'
>>> next(i)
'cat'
>>> next(i) # reached end
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration

91

∗Generators

• Generators are functions defined using yield instead of
return

• When called, a generator returns an object that behaves
like an iterator: it has a next method.

>>> def squares(n):
... for i in range(n):
... yield i**2
...
>>> s = squares(3)
>>> next(s)
0

92

>>> next(s)
1
>>> next(s)
4
>>> next(s)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration

The execution flow returns at the yield keyword (similar to
return), but the flow continues after the yield when the next
method is called the next time.

A more detailed example demonstrates this:

93

def squares(n):
print("begin squares()")
for i in range(n):

print(f" before yield i={i}")
yield i**2
print(f" after yield i={i}")

>>> g = squares(3)
>>> next(g)
begin squares()

before yield i= 0
0
>>> next(g)

after yield i= 0
before yield i= 1

94

1
>>> next(g)

after yield i= 1
before yield i= 2

4
>>> next(g)

after yield i= 2
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration

See also Socratica on Iterators, Iterables, and Itertools

95

https://youtu.be/WR7mO_jYN9g

Reading and writing files

File input/output

It is a common task to

• read some input data file
• do some calculation/filtering/processing with the data
• write some output data file with results

Python distinguishes between

• text files ('t')
• binary files 'b')

If we don’t specify the file type, Python assumes we mean text
files.

96

Writing a text file

>>> with open('test.txt', 'tw') as f:
... f.write("first line\nsecond line")
...
22

creates a file test.txt that reads

first line
second line

97

• To write data, we need to open the file with 'w' mode:
with open('test.txt', 'w') as f:

By default, Python assumes we mean text files. However,
we can be explicit and say that we want to create a Text
file for Writing:

with open('test.txt', 'wt') as f:

• If the file exists, it will be overridden with an empty file
when the open command is executed.

• The file object f has a method f.write which takes a
string as an input argument.

98

Reading a text file

We create a file object f using

>>> with open('test.txt', 'rt') as f: # Read Text

and have different ways of reading the data:

1. f.read() returns one long string for the whole file
>>> with open('test.txt', 'rt') as f:
... data = f.read()
...
>>> data
'first line\nsecond line'

99

2. f.readlines() returns a list of strings (each being one
line)
>>> with open('test.txt', 'rt') as f:
... lines = f.readlines()
...
>>> lines
['first line\n', 'second line']

100

3. ∗Advanced: Use text file f as an iterable object: process
one line in each iteration
>>> with open('test.txt', 'rt') as f:
>>> for line in f:
... print(line, end='')
...
first line
second line
>>> f.close()
This is important for large files: the file can be larger than
the computer RAM as only one line at a time is read from
disk to memory.

101

∗File input and output without context manager

With file context manager (recommended):

>>> with open('test.txt', 'rt') as f: # This creates
... # the context.
... data = f.read() # We can use 'f'
... # in the context.
... # File 'f' is automatically closed
>>> data # when the context is left.
'first line\nsecond line'

Without file context manager (not recommended!):

>>> f = open('test.txt', 'rt')
>>> data = f.read()
>>> f.close() # must close file manually
>>> data
'first line\nsecond line'

102

Use case: Reading a file, iterating over lines

Often we want to process line by line. Typical code fragment:

with open('myfile.txt', 'rt') as f:
lines = f.readlines()

some processing of the lines object
for line in lines:

print(line)

103

Splitting a string

• We often need to split a string into smaller parts: use
string method split():
(try help("".split) at the Python prompt for more info)

Example:

>>> c = 'This is my string'
>>> c.split()
['This', 'is', 'my', 'string']
>>> c.split('i')
['Th', 's ', 's my str', 'ng']

104

Useful functions processing text files:

• string.strip() method gets rid of leading and trailing
white space, i.e. spaces, newlines (\n) and tabs (\t):
>>> a = " hello\n "
>>> a.strip()
'hello'

• int() and float convert strings into numbers (if possible)
>>> int("42")
42
>>> float("3.14")
3.14
>>> int("0.5")
Traceback (most recent call last):

ValueError: invalid literal for int()
with base 10: '0.5'

105

Exercise: Shopping list

Given a list

bread 1 1.39
tomatoes 6 0.26
milk 3 1.45
coffee 3 2.99

Write program that computes total cost per item, and writes to
shopping_cost.txt:

bread 1.39
tomatoes 1.56
milk 4.35
coffee 8.97

106

One solution

One solution is shopping_cost.py

with open('shopping.txt', 'tr') as fin: # INput File
lines = fin.readlines()

with open('shopping_cost.txt', 'tw') as fout: # OUTput File
for line in lines:

words = line.split()
itemname = words[0]
number = int(words[1])
cost = float(words[2])
totalcost = number * cost
fout.write(f"{itemname:10} {totalcost}\n")

107

Exercise

Write function print_line_sum_of_file(filename) that
reads a file of name filename containing numbers separated
by spaces, and which computes and prints the sum for each
line. A data file might look like

2 3 5 -30 100
0 45 3 2
17

LAB4

108

∗Binary files 1

• Files that store binary data are opened using the 'b' flag
(instead of 't' for Text):

open('data.dat', 'br')

• For text files, we read and write str objects. For binary
files, use the bytes type instead.

• By default, store data in text files. Text files are human
readable (that’s good) but take more disk space than
binary files.

• Reading and writing binary data is outside the scope of
this introductory module. If you read arbitrary binary
data, you may need the struct module.

• For large/complex scientific data, consider HDF5.

109

∗HDF5 files

• If you need to store large and/or complex data, consider
the use of HDF5 files:
https://portal.hdfgroup.org/display/HDF5/HDF5

• Python interface: https://www.h5py.org (import h5py)
• hdf5 files

• provide a hierarchical structure (like subdirectories and
files)

• can compress data on the fly
• supported by many tools
• standard in some areas of science
• optimised for large volume of data and effective access

110

https://portal.hdfgroup.org/display/HDF5/HDF5
https://www.h5py.org

Outlook: first plot

import math
import matplotlib.pyplot as plt # convention

xs = [] # store x-values for plot in list
ys = [] # store y-values for plot in list
for i in range(100): # compute data

x = 0.1 * i
xs.append(x)
y = math.sin(x) # we plot sin(x)
ys.append(y)

plot data
plt.plot(xs, ys, '-o')

plt.savefig("matplotlib-mini-example.pdf")

111

Outlook: first plot

0 2 4 6 8 10

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

112

str, repr and eval

The str function and __str__ method

All objects in Python should provide a method __str__ which
returns an informal string representation of the object.
This method a.__str__ is called when we apply the str
function to object a:

>>> a = 3.14
>>> a.__str__()
'3.14'
>>> str(a)
'3.14'

>>> import datetime
>>> now = datetime.datetime.now()
>>> now
datetime.datetime(2022, 1, 13, 13, 44, 56, 392268)
>>> str(now)
'2022-01-13 13:44:56.392268'

113

Implicit calling of str function

The string method x.__str__ of object x is called implicitly, when we

• pass the object x directly to the print command

• use the ”{x}” notation in f-strings

>>> now = datetime.datetime.now()
>>> now
datetime.datetime(2022, 1, 13, 13, 44, 56, 392268)
>>> print(now)
2022-01-13 13:44:56.392268
>>> f"{now}"
'2022-01-13 13:44:56.392268'

114

∗The repr function and __repr__ method

• The repr function should convert a given object into an as
accurate as possible string representation

• The repr function will generally provide a more detailed
string than str.

• Applying repr to the object x will attempt to call
x.__repr__().

• The python (and IPython) prompt uses repr to ’display’
objects.

115

Example:

>>> import datetime
>>> t = datetime.datetime.now()
>>> str(t)
'2022-01-13 13:55:39.158456'
>>> repr(t)
'datetime.datetime(2022, 1, 13, 13, 55, 39, 158456)'
>>> t
datetime.datetime(2022, 1, 13, 13, 55, 39, 158456)

For many objects, str(x) and repr(x) return the same string.

116

∗The eval function

The eval function accepts a string, and evaluates the string (as
if it was entered at the Python prompt):

>>> x = 1
>>> eval('x + 1')
2
>>> s = "[10, 20, 30]"
>>> type(s)
<class str>
>>> eval(s)
[10, 20, 30]
>>> type(eval(s))
<class list>

117

∗The repr and eval function

Given an accurate representation of an object as a string, we
can convert that string into the object using the eval function.

>>> i = 42
>>> type(i)
<class int>
>>> repr(i)
'42'
>>> type(repr(i))
<class str>
>>> eval(repr(i))
42
>>> type(eval(repr(i)))
<class int>

118

The datetime example:

>>> import datetime
>>> t = datetime.datetime.now()
>>> t_as_string = repr(t)
>>> t_as_string
'datetime.datetime(2016, 9, 8, 14, 28, 48, 648192)'
>>> t2 = eval(t_as_string)
>>> t2
datetime.datetime(2016, 9, 8, 14, 28, 48, 648192)
>>> type(t2)
<class datetime.datetime>
>>> t == t2
True

119

Print

print function

• the print function sends content to the “standard
output” (usually the screen)

• print() prints an empty line:
>>> print()

• Given a single string argument, this is printed, followed by
a new line character:
>>> print("Hello")
Hello

120

• Given another object (not a string), the print function will
ask the object for its preferred way to be represented as a
string (via the __str__ method):
>>> print(42)
42

• Given multiple objects separated by commas, they will be
printed separated by a space character:
>>> print("dog", "cat", 42)
dog cat 42

• To supress printing of a new line, use the end option:
>>> print("Dog", end=""); print("Cat")
DogCat
>>>

121

Common strategy for the print command

• Construct some string s, then print this string using the
print function
>>> s = "I am the string to be printed"
>>> print(s)
I am the string to be printed

• The question is, how can we construct the string s? We
talk about string formatting.

122

String formatting

String formatting & Example 1

• Task: Given some objects, we would like to create a string
representation.

• Example 1: a variable t has the value 42.123 and we like to
print Duration is 42.123s to the screen.

• Solution: Create a formatted string “Duration is
42.123s” and pass this string to the print function:
>>> t = 42.123
>>> print(f"Duration = {t}s")
Duration = 42.123s

• With string formatting, we mean the creation of the string
“Duration is 42.123s”

123

String formatting & Example 2

• Example 2: a variable t has the value 42.123 and we like to
print Duration is 42.1s to the screen (i.e round to one
post-decimal digit.)

• Solution:
>>> t = 42.123
>>> print(f"Duration = {t:.1f}s")
Duration = 42.1s

124

String formatting: Example 2 explanation

Explanation of f"Duration = {t:.1f}s”

f" Beginning of a formatted string literal
Duration = string content

{…} content in curly braces is evaluated by Python
t take value from variable t
:f format t as a floating point number
.1 display one digit after the decimal point
s string content
" end of formatted string literal

125

String formatting examples with numbers

>>> import math
>>> p = math.pi
>>> f"{p}" # default representation (same as `str(p)`)
'3.141592653589793'
>>> str(p)
'3.141592653589793'
>>> f"{p:f}" # as floating point number (6 post-dec digits)
'3.141593'
>>> f"{p:10f}" # total number 10 characters wide
' 3.141593'
>>> f"{p:10.2f}" # 10 wide and 2 post-decimal digits
' 3.14'
>>> f"{p:.10f}" # 10 post-decimal digits
'3.1415926536'
>>> f"{p:e}" # in exponential notation
'3.141593e+00'
>>> f"{p:g}" # extra compact
'3.14159' 126

Expressions in f-strings are evaluated at run time

We can evaluate Python expressions in the f-strings:

>>> import math
>>> f"The diagonal has length {math.sqrt(2)}."
'The diagonal has length 1.4142135623730951.'

∗Advanced: Precision specifier can also be variables:

>>> width = 10
>>> precision = 4
>>> f"{math.pi:{width}.{precision}}"
' 3.142'

127

Show variable name and value with {name=}

Convenient short cut for debugging print statements:

>>> a = 10
>>> b = 20
>>> c = math.sqrt(a**2 + b**2)
>>> f"State: {a=} {b=} {c=}"
'State: a=10 b=20 c=22.360679774997898'

128

String formatting method overview

“f-strings”: most convenient and recommended method (2016):

>>> value = 42
>>> f"the value is {value}"
'the value is 42'

“new style” or “advanced” string formatting (Python 3, 2006):

>>> "the value is {}".format(value)
'the value is 42'

“% operator” (Python 1 and 2):

>>> "the value is %s" % value
'the value is 42'

129

Default function arguments

Default argument values for functions

• Motivation:
• suppose we need to compute the area of rectangles and
• we know the side lengths a and b.
• Most of the time, b=1 but sometimes b can take other
values.

• Solution 1:
def area(a, b):

return a * b

print(f"The area is {area(3, 1)}")
print(f"The area is {area(2.5, 1)}")
print(f"The area is {area(2.5, 2)}")

130

• We can make the function more user friendly by providing
a default value for b. We then only have to specify b if it is
different from this default value:

• Solution 2 (with default value for argument b):
def area(a, b=1):

return a * b

print(f"The area is {area(3)}")
print(f"The area is {area(2.5)}")
print(f"The area is {area(2.5, 2)}")

• Default parameters have to be at the end of the argument
list in the function definition.

131

Default argument values

You may have met default arguments in use before, for
example

• the print function uses end='\n' as a default value
• the open function uses mode='rt' as a default value
• the list.pop method uses index=-1 as a default

LAB6

132

Keyword function arguments

Keyword argument values

• We can call functions with a “keyword” and a value. (The
keyword is the name of the variable in the function
definition.)

• Here is an example
def f(a, b, c):

print(f"{a=} {b=} {c=}")

f(1, 2, 3)
f(c=3, a=1, b=2)
f(1, c=3, b=2)
which produces this output:

133

a=1 b=2 c=3
a=1 b=2 c=3
a=1 b=2 c=3

• If we use only keyword arguments in the function call,
then we do not need to know the order of the arguments.
(This is good.)

• Choosing meaningful variable names in the function
definition makes the function more user friendly.

134

∗Disallow or enforce keyword argument use

def f(pos1, pos2, /, pos_or_kwd, *, kwd1, kwd2):
----------- ---------- ----------
| | |
| Positional or keyword |
| - Keyword only
-- Positional only

See https://www.python.org/dev/peps/pep-0570/#how-to-teach-this

def standard_arg(arg):
print(arg)

def pos_only_arg(arg, /):
print(arg)

135

https://www.python.org/dev/peps/pep-0570/#how-to-teach-this

def kwd_only_arg(*, arg):
print(arg)

def combined_example(pos_only, /, standard, *, kwd_only):
print(pos_only, standard, kwd_only)

136

List comprehension

List comprehension - one slide summary

>>> xs = [2*i for i in range(5)] # 'list comprehension'
>>> print(xs)
[0, 2, 4, 6, 8]

is equivalent to this for set of commands with a for loop:

>>> xs = []
>>> for i in range(5):
... xs.append(2*i)
...
>>> print(xs)
[0, 2, 4, 6, 8]

• useful when we need to process or create a list quickly
• no additional functionality over for-loop
• sometimes more elegant (≈ shorter) than for-loop

137

List comprehension

• List comprehension follows the mathematical “set builder
notation”

• Convenient way to process a list into another list (without
for-loop).

Examples

>>> [2*i for i in range(5)]
[0, 2, 4, 6, 8]

>>> [x**2 for x in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

138

http://en.wikipedia.org/wiki/List_comprehension
http://en.wikipedia.org/wiki/Set-builder_notation
http://en.wikipedia.org/wiki/Set-builder_notation

List comprehension structure

Structure of list comprehension:

[EXPRESSION(OBJECT) for OBJECT in SEQUENCE]

where EXPRESSION, OBJECT, and SEQUENCE can vary.
Examples:

>>> [2*i for i in range(5)]
[0, 2, 4, 6, 8]

>>> import math
>>> [math.sqrt(x) for x in [1, 4, 9, 16]]
[1.0, 2.0, 3.0, 4.0]

>>> [s.capitalize() for s in ["dog", "cat", "mouse"]]
['Dog', 'Cat', 'Mouse']

139

List comprehension example 1 and 2

Can be useful to populate lists with numbers quickly

• Example 1:

>>> ys = [x**2 for x in range(10)]
>>> ys
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

• Example 2:

>>> import math
>>> xs = [0.1 * i for i in range(5)]
>>> xs
[0.0, 0.1, 0.2, 0.3, 0.4]
>>> ys = [math.exp(x) for x in xs]
>>> ys
[1.0, 1.1051709180756477, 1.2214027581601699,
1.3498588075760032, 1.4918246976412703]

140

List comprehension with filter

[EXPRESSION(OBJECT) for OBJECT in SEQUENCE
if CONDITION(OBJECT)]

• include OBJECT only if CONDITION(OBJECT) is True.
• Example:
>>> [i for i in range(10)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> [i for i in range(10) if i > 5]
[6, 7, 8, 9]

>>> [i for i in range(10) if i**2 > 5]
[3, 4, 5, 6, 7, 8, 9]

141

∗Dictionary comprehension

In addition to list comprehension there is also dictionary
comprehension available:

>>> {x: x**2 for x in range(5)}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

>>> {word: len(word) for word in ["dog", "bird", "mouse"]}
{'dog': 3, 'bird': 4, 'mouse': 5}

142

∗Generator comprehension (advanced)

Generators (see slide 92) can also be created using a
comprehension syntax:

>>> gen = (x**2 for x in range(5))
>>> type(gen)
<class 'generator'>
>>> for item in gen:
... print(item)
...
0
1
4
9
16
>>> list((x**2 for x in range(5)))
[0, 1, 4, 9, 16]
>>>

143

Optimisation

Optimisation example: garden fence

garden
area A

a

b

fence

Optimisation problem:

• The shape of the fenced area must be a rectangle (side
lengths a and b).

• We have L = 100m of fence available.
• We want to maximise the enclosed garden area A = ab.
• What are the optimal values for a and b?

144

Optimisation example: strategy

garden
area A

a

b

fence

How do we find a and b that optimise the area A(a,b)?

• We know L = 100m = 2a+ 2b
• So we have only one unknown: when a is fixed, then b is
given by b = (L− 2a)/2.

• Change a systematically to find best largest value of A.

145

Optimisation example: attempt 1 1/3

import matplotlib.pyplot as plt

def fenced_area(a):
"""Return area for garden with side length a.

Given the side length a of a rectangular garden fence
(with side lengths a and b), compute what side length
b can be used for a total fence length of 100m.
Return the associated area.
"""
L = 100 # total length of fence in metre
for a given a, what is length b to use all 100m?
L = 2*a + 2b => b = (L - 2a) / 2
b = (L - 2*a) / 2

146

Optimisation example: attempt 1 2/3

main program
side_lengths = [] # collect the side length a
areas = [] # collect the associated areas

vary side length of fence a [in metres]
for a in range(10, 40, 5):

side_lengths.append(a)
areas.append(fenced_area(a))

plt.plot(side_lengths, areas, '-o')
plt.xlabel('a [m]')
plt.ylabel('garden area [m^2]')
plt.grid(True)
plt.savefig('optimisation-fence.pdf')

147

Optimisation example: attempt 1 3/3

10 15 20 25 30 35
a [m]

400

450

500

550

600

ga
rd

en
 a

re
a

[m
^2

]

148

Optimisation example: “educational example”

We show one strategy to solve an optimisation problem with a
simple example so we can focus on the strategy.

For the given fence problem:

• we can guess the correct answer
• there are better ways to find the result with the computer
• we can find the correct answer analytically

Analytical solution

• A(a) = ab = a (L−2a)
2 = aL

2 − a2

• Find maximum using dA
da

!
= 0 : dA

da = L
2 − 2a⇒ a = L

4

• b = L−2a
2 ⇒ b = L

4

• Check d2A
da2 = −2 < 0⇒ A

(L
4
)
is maximum. ✓

149

commit fa7fe4b0c5c60fb97b941fb639cda6b7e29e45da
Author: Hans Fangohr <fangohr@users.noreply.github.com>
Date: Sat Nov 2 15:53:22 2024 +0100

complete lecture 5 preparation.

149

	Introduction Computing & Computational Engineering
	First steps with Python
	Functions
	About Python
	Introspection (dir)
	Conditionals, if-else
	Style guide for Python code
	Using modules
	Sequences
	Loops
	Reading and writing files
	str, repr and eval
	Print
	String formatting
	Default function arguments
	Keyword function arguments
	List comprehension
	Optimisation

